Comparison of DataFrames

Compare basic features of RedAmber with Python pandas, R Tidyverse and Julia DataFrames.

Select columns (variables)

Features RedAmber Tidyverse pandas DataFrames.jl
Select columns as a dataframe pick, drop, [] dplyr::select, dplyr::select_if [], loc[], iloc[], drop, select_dtypes [], select
Select a column as a vector [], v dplyr::pull, [, x] [], loc[], iloc[] [!, :x]
Move columns to a new position pick, [] relocate [], reindex, loc[], iloc[] select,transform

Select rows (records, observations)

Features RedAmber Tidyverse pandas DataFrames.jl
Select rows that meet logical criteria as a dataframe slice, remove, [] dplyr::filter [], filter, query, loc[] filter
Select rows by position as a dataframe slice, remove, [] dplyr::slice iloc[], drop subset
Move rows to a new position slice, [] dplyr::filter, dplyr::slice reindex, loc[], iloc[] permute

Update columns / create new columns

Features RedAmber Tidyverse pandas DataFrames.jl
Update existing columns assign dplyr::mutate assign, []= mapcols
Create new columns assign, assign_left dplyr::mutate apply insertcols,.+
Compute new columns, drop others new transmute (dfply:)transmute transform,insertcols,mapcols
Rename columns rename dplyr::rename, dplyr::rename_with, purrr::set_names rename, set_axis rename
Sort dataframe sort dplyr::arrange sort_values sort

Reshape dataframe

Features RedAmber Tidyverse pandas DataFrames.jl
Gather columns into rows (create a longer dataframe) to_long tidyr::pivot_longer melt stack
Spread rows into columns (create a wider dataframe) to_wide tidyr::pivot_wider pivot unstack
transpose a wide dataframe transpose transpose, t transpose, T permutedims

Grouping

Features RedAmber Tidyverse pandas DataFrames.jl
Grouping group, group.summarize dplyr::group_by %>% dplyr::summarise groupby.agg combine,groupby

Combine dataframes or tables

Features RedAmber Tidyverse pandas DataFrames.jl
Combine additional columns merge, bind_cols dplyr::bind_cols concat combine
Combine additional rows concatenate, concat, bind_rows dplyr::bind_rows concat transform
Join right to left, leaving only the matching rows inner_join, join dplyr::inner_join merge innerjoin
Join right to left, leaving all rows full_join, outer_join, join dplyr::full_join merge outerjoin
Join matching values to left from right left_join, join dplyr::left_join merge leftjoin
Join matching values from left to right right_join, join dplyr::right_join merge rightjoin
Return rows of left that have a match in right semi_join, join dplyr::semi_join [isin] semijoin
Return rows of left that do not have a match in right anti_join, join dplyr::anti_join [isin] antijoin
Collect rows that appear in left or right union dplyr::union merge
Collect rows that appear in both left and right intersect dplyr::intersect merge
Collect rows that appear in left but not right difference, setdiff dplyr::setdiff merge